Abstract
In this paper, we consider a delayed diffusive predator–prey model with Leslie–Gower term and herd behavior subject to Neumann boundary conditions. We are mainly concerned with the impact of time delay on the stability of this model. First, for delayed differential equations and delayed-diffusive differential equations, the stability of the positive equilibrium and the existence of Hopf bifurcation are investigated respectively. It is observed that when time delay continues to increase and crosses through some critical values, a family of homogeneous and inhomogeneous periodic solutions emerge. Then, the explicit formula for determining the stability and direction of bifurcating periodic solutions are also derived by employing the normal form theory and center manifold theorem for partial functional differential equations. Finally, some numerical simulations are shown to support the analytical results.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have