Abstract

An analytical investigation of Hopf bifurcation and hunting behavior of a rail wheelset with nonlinear primary yaw dampers and wheel-rail contact forces is presented. This study is intended to complement earlier studies by True et al., where they investigated the nonlinearities stemming from creep-creep force saturation and nonlinear contacts between a realistic wheel and rail profile. The results indicate that the nonlinearities in the primary suspension and flange contact contribute significantly to the hunting behavior. Both the critical speed and the nature of bifurcation are affected by the nonlinear elements. Further, the results show that in some cases, the critical hunting speed from the nonlinear analysis is less than the critical speed from a linear analysis. This indicates that a linear analysis could predict operational speeds that in actuality include hunting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.