Abstract

AbstractWe give the basic theory of graded Hopf algebras, and then illustrate the theory in detail with three examples: the Hopf algebra of symmetric functions, Sym, the Hopf algebra of quasisymmetric functions, QSym, and the Hopf algebra of noncommutative symmetric functions, NSym. In each case we describe pertinent bases, the product, the coproduct and the antipode. Once defined we see how Sym is a subalgebra of QSym, and a quotient of NSym. We also discuss the duality of QSym and NSym and a variety of automorphisms on each. We end by defining combinatorial Hopf algebras and discussing the role QSym plays as the terminal object in the category of all combinatorial Hopf algebras.Key wordscombinatorial Hopf algebrascoproductsdualityHopf algebrasnoncommutative symmetric functionsP-partitionsproductsquasisymmetric functionssymmetric functions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.