Abstract

Supercapacitors (SCs) have the advantages of high power density, long cycle life, and fast charging/discharging rates, but relatively low energy density limits their practical application prospects. The key to improving the energy density of supercapacitors is to develop electrode materials with excellent performance. Metal-organic frameworks (MOFs) used for electrochemical energy storage have emerged as a research hotspot due to their adjustable microstructure, porosity, and high specific surface area. To address the demands of high-performance supercapacitors, composite nanomaterials can be prepared by rationally designing MOFs. Herein, CoNi-MOF nano-blocks are grown on the carbon cloth, and ultrathin NiMo layered double hydroxides (NiMo-LDH) nanosheets are further anchored on its surfaces to form a honeycomb porous heterostructure (NiMo-LDH@CoNi-MOF). The porous heterostructures increase the electrochemically active specific surface area and shorten the charge transfer distance, possessing ultra-high capacitance of 15.6 F/cm2 at 1 mA/cm2. Furthermore, utilizing annealed activated carbon cloth (AAC) as the negative electrode, the assembled NiMo-LDH@CoNi-MOF-2//AAC asymmetric supercapacitor possesses an energy density of 1.10 mWh/cm2 at a power density of 4 mW/cm2, and a capacitance retention of 97.8 % after 10,000 cycles. This material exhibits distinctive nanostructures and favorable electrochemical characteristics, providing a unique idea for preparing supercapacitors with high energy density and power density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.