Abstract

The electrochemical CO2 reduction (ECR) of high-value multicarbon products is an urgent challenge for catalysis and energy resources. Herein, we reported a simple polymer thermal treatment strategy for preparing honeycomb-like CuO@C catalysts for ECR with remarkable C2H4 activity and selectivity. The honeycomb-like structure favored the enrichment of more CO2 molecules to improve the CO2-to-C2H4 conversion. Further experimental results indicate that the CuO loaded on amorphous carbon with a calcination temperature of 600 °C (CuO@C-600) has a Faradaic efficiency (FE) as high as 60.2% towards C2H4 formation, significantly outperforming pure CuO-600 (18.3%), CuO@C-500 (45.1%) and CuO@C-700 (41.4%), respectively. The interaction between the CuO nanoparticles and amorphous carbon improves the electron transfer and accelerates the ECR process. Furthermore, in situ Raman spectra demonstrated that CuO@C-600 can adsorb more adsorbed *CO intermediates, which enriches the CC coupling kinetics and promotes C2H4 production. This finding may offer a paradigm to design high-efficiency electrocatalysts, which can be beneficial to achieve the “double carbon goal.”

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.