Abstract

Abstract From the combined experimental and theoretical investigations, we suggest the formation of a honeycomb structure of BeO monolayer on the Mo(112) surface. This structure is matched to the substrate Mo(112), thus giving the (1 × 1) LEED pattern, and its formation is confirmed also by DFT calculations and work function measurements. While a free BeO monolayer is dielectric, the BeO/Mo(112) system is definitely metallic as follows from the bands crossing EF and significant density of states at EF. The honeycomb BeO monolayer is bound to the Mo(112) surface through O atoms situated atop Mo atoms of the surface rows. A substantial rigidity of the BeO monolayer leads to the appearance of empty space above the Mo(112) surface furrows, which may be filled by some gas or water molecules. Hence, this layered system can be very attractive in various applications where porous materials are explored (e.g. for hydrogen storage purposes).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call