Abstract
A hopelessly queenless honeybee colony has only one reproductive option: some workers must produce sons before the colony dies. This requires the workers to curtail egg policing (removal of worker-produced eggs), rendering the colony vulnerable to non-natal reproductive parasitism. In the Western honeybee, Apis mellifera, guarding (prevention of foreign workers from entering a colony) increases in queenless colonies, providing a defence against non-natal parasitism. However, in the closely related Eastern honeybee A. cerana, queenless colonies appear to be more tolerant of bees from other colonies. We presented guards of four A. cerana colonies with three types of workers: nestmate returning foragers, non-nestmate returning foragers and non-nestmates from a laying-worker colony. The latter are likely to have active ovaries, allowing us to test whether guard bees can detect which potential invaders are more likely to be reproductive parasites. After assessing guards’ reactions, we recaptured test bees and dissected them to determine levels of ovary activation. We found that nestmates were accepted significantly more frequently than the other two types of workers. However, there was no difference in the overall acceptance rates of non-nestmate returning foragers and bees from within laying-worker colonies. In addition, ovary-activated workers were no less likely to be accepted than those with inactive ovaries. Interestingly, colonies were more accepting of all three types of test bee after being made queenless. We conclude that, as has been previously suggested, guarding has no specific role in the prevention of non-natal parasitism in A. cerana.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have