Abstract
The central message of this article is that no one should use the sample covariance matrix for portfolio optimization. It is subject to estimation error of the kind most likely to perturb a mean-variance optimizer. Instead, a matrix can be obtained from the sample covariance matrix through a transformation called shrinkage. This tends to pull the most extreme coefficients toward more central values, systematically reducing estimation error when it matters most. Statistically, the challenge is to know the optimal shrinkage intensity. Shrinkage reduces portfolio tracking error relative to a benchmark index, and substantially raises the manager9s realized information ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.