Abstract
The aim of this study is to assess the usefulness of physicochemical parameters (pH, water activity, free acidity, refraction index, Brix, moisture content and ash content), color parameters (L∗, a∗, b∗, chroma, hue angle and yellow index) and phenolics (quercetin, apigenin, myricetin, isorhamnetin, kaempherol, caffeic acid, chrysin, galangin, luteolin, p-coumaric acid, gallic acid and pinocembrin) in view of classifying honeys according to their botanical origin (acacia, tilia, sunflower, honeydew and polyfloral). Thus, the classification of honeys has been made using the principal component analysis (PCA), linear discriminant analysis (LDA) and artificial neural networks (ANN). The multilayer perceptron network with 2 hidden layers classified correctly 94.8% of the cross validated samples.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have