Abstract

Despite the increasing understanding of female reproduction, the molecular diagnosis of primary ovarian insufficiency (POI) is seldom obtained. The RNA-binding protein NANOS3 poses as an interesting candidate gene for POI since members of the Nanos family have an evolutionarily conserved function in germ cell development and maintenance by repressing apoptosis. We performed mutational analysis of NANOS3 in a cohort of 85 Brazilian women with familial or isolated POI, presenting with primary or secondary amenorrhea, and in ethnically-matched control women. A homozygous p.Glu120Lys mutation in NANOS3 was identified in two sisters with primary amenorrhea. The substituted amino acid is located within the second C2HC motif in the conserved zinc finger domain of NANOS3 and in silico molecular modelling suggests destabilization of protein-RNA interaction. In vitro analyses of apoptosis through flow cytometry and confocal microscopy show that NANOS3 capacity to prevent apoptosis was impaired by this mutation. The identification of an inactivating missense mutation in NANOS3 suggests a mechanism for POI involving increased primordial germ cells (PGCs) apoptosis during embryonic cell migration and highlights the importance of NANOS proteins in human ovarian biology.

Highlights

  • Primary ovarian insufficiency (POI) is characterized by ovarian failure in women under the age of 40 years [1, 2]

  • In the remaining 83 women composing our POI cohort, no new variants were identified in NANOS3

  • The present study aimed to investigate the contribution of variants in NANOS3 to human POI

Read more

Summary

Introduction

Primary ovarian insufficiency (POI) is characterized by ovarian failure in women under the age of 40 years [1, 2]. POI may present as primary amenorrhea (PA) in severe cases with prepubertal onset or postpubertally as secondary amenorrhea (SA) associated with infertility, hypoestrogenism, and elevated gonadotropins (FSH > 40 U/L) This complex spectrum of progressive ovarian abnormality is largely related to the size of primordial germ cells (PGCs) pool, where. BioMed Research International prepubertal onset might reflect a complete lack of germ cells since birth causing a failure in the maintenance of ovarian somatic structure and postpubertal onset would reflect a variably insufficient pool of oocytes. This disorder is associated with female infertility and affects 1 to 2% of all women [3,4,5]. Mutations in these genes account for a minority of cases of ovarian dysfunction, indicating that additional factors remain to be identified

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.