Abstract

ObjectiveMonogenic congenital cataract is one of the most genetically heterogeneous ocular conditions with almost 30 different genes involved in its etiology. In adult patients, genotype–phenotype correlations are troubled by eye surgery during infancy and/or long-term ocular complications. Here, we describe the molecular diagnosis of GALK1 deficiency as the cause of autosomal recessive congenital cataract in a family from Costa Rica. MethodsFour affected siblings were included in the study. All of them underwent eye surgery during the first decade but medical records were not available. Congenital cataract was diagnosed by report. Molecular analysis included genome wide homozygosity mapping using a 250K SNP Affymetrix microarray followed by PCR amplification and direct nucleotide sequencing of candidate gene. ResultsGenome wide homozygosity mapping revealed a 6Mb region of homozygosity shared by two affected siblings at 17q25. The GALK1 gene was included in this interval and direct sequencing of this gene revealed a homozygous c.1144C>T mutation (p.Q382*) in all four affected subjects. ConclusionsThis work demonstrates the utility of homozygosity mapping in the retrospective diagnosis of a family with congenital cataracts in which ocular surgery at early age, the lack of medical records, and the presence of long term eye complications, impeded a clear clinical diagnosis during the initial phases of evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.