Abstract
Abstract We introduce the concept of a homotopy motion of a subset in a manifold and give a systematic study of homotopy motions of surfaces in closed orientable 3-manifolds. This notion arises from various natural problems in 3-manifold theory such as domination of manifold pairs, homotopical behavior of simple loops on a Heegaard surface and monodromies of virtual branched covering surface bundles associated with a Heegaard splitting.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have