Abstract
Dynamical system models of complex biochemical reaction networks are usually high-dimensional, non-linear, and contain many unknown parameters. In some cases the reaction network structure dictates that positive equilibria must be unique for all values of the parameters in the model. In other cases multiple equilibria exist if and only if special relationships between these parameters are satisfied. We describe methods based on homotopy invariance of degree which allow us to determine the number of equilibria for complex biochemical reaction networks and how this number depends on parameters in the model.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.