Abstract
Mathematical models of biochemical reaction networks are usually high dimensional, nonlinear, and have many unknown parameters, such as reaction rate constants, or unspecified types of chemical kinetics (such as mass-action, Michaelis-Menten, or Hill kinetics). On the other hand, important properties of these dynamical systems are often determined by the network structure, and do not depend on the unknown parameter values or kinetics. For example, some reaction networks may give rise to multiple equilibria (i.e., they may function as a biochemical switch) while other networks have unique equilibria for any parameter values. Or, some reaction networks may give rise to monotone systems, which renders their dynamics especially stable. We describe how the species-reaction graph (SR graph) can be used to analyze both multistability and monotonicity of networks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.