Abstract
When activated at low frequencies (0.1-1 Hz), second postnatal week synapses onto the most distal part of the apical dendritic tree (stratum lacunosum-moleculare) of rat hippocampal CA1 pyramidal cells display a frequency-dependent synaptic depression not observed for the more proximal (stratum radiatum) synapses. Depression in this frequency range is thought of as a possible contributor to behavioural habituation. In fact, in contrast to the proximal synapses, the distal synapses provide more direct sensory information from the entorhinal cortex as well as from thalamic nuclei. The use of antagonists showed that the activation of GABAA , GABAB , NMDA, mGlu, kainate, adenosine, or endocannabinoid receptors was not directly involved in the depression, indicating it to be intrinsic to the synapses themselves. While the depression affected paired-pulse plasticity in a manner indicating a decrease in vesicle release probability, the depression could not be explained by a stimulus-dependent decrease in calcium influx. Despite affecting the synaptic response evoked by brief high-frequency stimulation (10 impulses, 20 Hz) in a manner indicating vesicle depletion, the depression was unaffected by large variations in release probability. The depression was found not only to affect the synaptic transmission at low frequencies (0.1-1 Hz) but also to contribute to the depression evolving during brief high-frequency stimulation (10 impulses, 20 Hz). We propose that a release-independent process directly inactivating release sites with a fast onset (ms) and long duration (up to 20 s) underlies this synaptic depression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.