Abstract

This study presents a theoretical, numerical, and experimental survey on the nature of homonuclear dipolar couplings in systems of half-integer quadrupolar nuclei undergoing magic-angle-spinning (MAS). Various spin interactions that do not commute with homonuclear dipolar couplings (chemical shift effects, heteronuclear dipolar couplings, quadrupolar interactions) may lead to recoupling effects under MAS, yielding a variety of pathways for transferring magnetization between proximate quadrupole nuclei in 2D correlation experiments. The Hamiltonians underlying this anisotropy-driven recoupling of the dipolar interactions are theoretically derived and their characteristics revealed from theoretical and numerical arguments. To explore when and how these various recoupling mechanisms become relevant, a variety of 23Na and 11B 2D exchange NMR experiments were performed at different external magnetic fields and MAS frequencies on several compounds: Na2HPO4·2H2O, Na2SO3, disodium deoxycytidine heptahydrate, B2O3 and B10H14. The structural information content afforded by these experiments as well as their potential limitations are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call