Abstract
This paper deals with left non-degenerate set-theoretic solutions to the Yang–Baxter equation (= LND solutions), a vast class of algebraic structures encompassing groups, racks, and cycle sets. To each such solution there is associated a shelf (i.e., a self-distributive structure) which captures its major properties. We consider two (co)homology theories for LND solutions, one of which was previously known, in a reduced form, for biracks only. An explicit isomorphism between these theories is described. For groups and racks we recover their classical (co)homology, whereas for cycle sets we get new constructions. For a certain type of LND solutions, including quandles and non-degenerate cycle sets, the (co)homologies split into the degenerate and the normalized parts. We express 2-cocycles of our theories in terms of group cohomology, and, in the case of cycle sets, establish connexions with extensions. This leads to a construction of cycle sets with interesting properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.