Abstract

Ion mobility MS was employed to study the structure of the βB2B3-crystallin heterodimer following its detection by ESI-TOF MS. The results demonstrate that the heterodimer has a similar cross-section (3 165 Å(2)) and structure to the βB2B2-crystallin homodimer. Several homology-modelled structures for the βB2B3 heterodimer were constructed and assessed in terms of their calculated collision cross-sections and whether the solvent accessibilities of reactive amino acid side chains throughout the βB3 subunit are in accord with measured oxidation levels in radical probe MS protein footprinting experiments. The βB2B3 heterodimer AD model provides the best representation of the heterodimer's structure overall following a consideration of both the ion mobility and radical probe MS data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call