Abstract

Ion mobility-mass spectrometry is starting to be considered as a useful tool in the deconvolution of complex oil and petroleum samples. While ultrahigh resolution mass spectrometry is the incumbent technology in this field, ion mobility offers complementary information related to species size and shape, and also the ability to resolve structural isomers. In this work, a sample of the resins portion of the Saturates, Aromatics, Resins, and Asphaltenes (SARA) fractions of crude oil was analysed using an orthogonal acceleration quadrupole time-of-flight mass spectrometer (oa-QToF MS) that incorporates a travelling wave ion mobility spectrometry (TWIMS) region. The ion mobility data were compared with previously acquired ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) data and various nitrogen containing families were identified. Ion mobility data were processed in the typical way for the oil and petroleum industry; and the use of high resolution exact mass coupled with mobility data to provide enhanced species resolution was examined. Double bond equivalence (DBE) and carbon number groups were identified using patterns in the ion mobility data, which demonstrated the utility of ion mobility for discovering species relationships within the crude oil sample. The ability to calibrate the ion mobility cell and generate sizes for the detected ions was also recognised as potentially having particular value for the implementation of conversion or hydrotreatment processes in the oil industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call