Abstract

Corynebacterium pseudotuberculosis is a facultatively intracellular Gram-positive bacterium that causes caseous lymphadenitis, principally in sheep and goats, though sometimes in other species of animals, leading to considerable economic losses. This pathogen has a TCS known as PhoPR, which consists of a sensory histidine kinase protein (PhoR) and an intracellular response regulator protein (PhoP). This system is involved in the regulation of proteins present in various processes, including virulence. The regulation is activated by PhoP protein phosphorylation, an event that requires a magnesium (Mg(2+)) ion. Here we describe the 3D structure of the regulatory response protein (PhoP) of C. pseudotuberculosis through molecular modeling by homology. The model generated provides the first structural information on a full-length member of the OmpR/PhoP subfamily. Classical molecular dynamics was used to investigate the stability of the model. In addition, we used quantum mechanical/molecular mechanical techniques to perform (internal, potential) energy optimizations to determine the interaction energy between the Mg(2+) ion and the structure of the PhoP protein. Analysis of the interaction energy residue by residue shows that Asp-16 and Asp-59 play an important role in the protein-Mg(2+) ion interactions. These results may be useful for the future development of a new vaccine against tuberculosis based on genetic attenuation via a point mutation that results in the polar residue Asp-16 and/or Asp-59 being replaced with a nonpolar residue in the DNA-binding domain of PhoP of C. pseudotuberculosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.