Abstract

We have used homology modeling to construct a three-dimensional model of the yeast mitochondrial citrate transport protein (CTP), based on the recently published x-ray crystal structure of another mitochondrial transport protein, the ADP/ATP carrier. Superposition of the backbone traces of the homology-modeled CTP onto the crystallographically determined ADP carrier structure indicates that the CTP transmembrane domains are well modeled (i.e., root mean square deviation of 0.94 Å), whereas the loops facing the intermembrane space and the mitochondrial matrix are less certain (i.e., root mean square deviation values of 0.72–2.06 Å). The homology-modeled CTP is consistent with our earlier de novo models of the transporter's transmembrane domains, with respect to residues which face into the transport path. Importantly, the resulting model is consistent with our previous experimental data obtained from measuring reactivity of 34 single cysteine mutants in transmembrane domains 3 and 4 with methanethiosulfonate reagents. The model also points to a likely dimer interface region. In conclusion, our data help to define the substrate translocation pathway in both the modeled CTP structure and the crystallographic ADP carrier structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.