Abstract
In this paper we use fractal geometry to investigate boundary aspects of the first homology group for finite coverings of the modular surface. We obtain a complete description of algebraically invisible parts of this homology group. More precisely, we first show that for any modular subgroup the geodesic forward dynamic on the associated surface admits a canonical symbolic representation by a finitely irreducible shift space. We then use this representation to derive a complete multifractal description of the higher-dimensional level sets arising from the Manin–Marcolli limiting modular symbols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.