Abstract
We describe the homology intersection form associated to regular holonomic GKZ systems in terms of the combinatorics of regular triangulations. Combining this result with the twisted period relation, we obtain a formula of cohomology intersection numbers in terms of a Laurent series. We show that the cohomology intersection number depends rationally on the parameters. We also prove a conjecture of F. Beukers and C. Verschoor on the signature of the monodromy invariant hermitian form.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have