Abstract
Thromboxane (TX) A2 plays a central role in hemostasis, regulating platelet activation status and vascular tone. We have recently established that the TPβ isoform of the human TXA2 receptor (TP) undergoes rapid, agonist-induced homologous desensitization of signalling largely through a G protein-coupled receptor kinase (GRK) 2/3-dependent mechanism with a lesser role for protein kinase (PK) C. Herein, we investigated the mechanism of desensitization of signalling by the TPα isoform. TPα undergoes profound agonist-induced desensitization of signalling (intracellular calcium mobilization and inositol 1,4,5 trisphosphate generation) in response to the TXA2 mimetic U46619 but, unlike that of TPβ, this is independent of GRKs. Similar to TPβ, TPα undergoes partial agonist-induced desensitization that occurs through a GF 109203X-sensitive, PKC mechanism where Ser145 within intracellular domain (IC)2 represents the key phospho-target. TPα also undergoes more profound sustained PKC- and PKG-dependent desensitization where Thr337 and Ser331, respectively, within its unique C-tail domain were identified as the phospho-targets. Desensitization was impaired by the nitric oxide synthase (NOS), soluble guanylyl cyclase (sGC) and PKG inhibitors l-NAME, LY 83583 and KT5823, respectively, indicating that homologous desensitization of TPα involves nitric oxide generation and signalling. Consistent with this, U46619 led to rapid phosphorylation/activation of endogenous eNOS. Collectively, data herein suggest a mechanism whereby agonist-induced PKC phosphorylation of Ser145 partially and transiently impairs TPα signalling while PKG- and PKC-phosphorylation at both Ser331 and Thr337, respectively, within its C-tail domain profoundly desensitizes TPα, effectively terminating its signalling. Hence, in addition to the agonist-mediated PKC feedback mechanism, U46619-activation of the NOS/sGC/PKG pathway plays a significant role in inducing homologous desensitization of TPα.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.