Abstract
SLX4 is a scaffold to coordinate the action of structure-specific endonucleases that are required for homologous recombination and DNA repair. In view of ScSLX4 functions in the maintenance and stability of the genome in Saccharomyces cerevisiae, we have explored the roles of CaSLX4 in Candida albicans. Here, we constructed slx4Δ/Δ mutant and found that it exhibited increased sensitivity to the DNA damaging agent, methyl methanesulfonate (MMS) but not the DNA replication inhibitor, hydroxyurea (HU). Accordingly, RT-qPCR and western blotting analysis revealed the activation of SLX4 expression in response to MMS. The deletion of SLX4 resulted in a defect in the recovery from MMS-induced filamentation to yeast form and re-entry into the cell cycle. Like many other DNA repair genes, SLX4 expression was activated by the checkpoint kinase Rad53 under MMS-induced DNA damage. In addition, SLX4 was not required for the inactivation of the DNA damage checkpoint, as indicated by normal phosphorylation of Rad53 in slx4Δ/Δ cells. Therefore, our results demonstrate SLX4 plays an important role in cell recovery from MMS-induced DNA damage in C. albicans.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have