Abstract
We consider a non–homogeneous incompressible and heat conducting fluid confined to a 3D domain perforated by tiny holes. The ratio of the diameter of the holes and their mutual distance is critical, the former being equal to ε 3 , the latter proportional to ε, where ε is a small parameter. We identify the asymptotic limit for ε → 0, in which the momentum equation contains a friction term of Brinkman type determined uniquely by the viscosity and geometric properties of the perforation. Besides the inhomogeneity of the fluid, we allow the viscosity and the heat conductivity coefficient to depend on the temperature, where the latter is determined via the Fourier law with homogenized (oscillatory) heat conductivity coefficient that is different for the fluid and the solid holes. To the best of our knowledge, this is the first result in the critical case for the inhomogenous heat–conducting fluid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.