Abstract

The paper deals with the homogenization and numerical modelling of deformable porous media saturated by two-component electrolytes. The model relevant to the microscopic scale describes steady states of the medium while reflecting essential physical phenomena, namely electrochemical interactions in a dilute Newtonian solvent under assumptions of a small external electrostatic field and slow flow. The homogenization is applied to a linearized micromodel, whereby the thermodynamic equilibrium represents the reference state. Due to the dimensional analysis, scaling of the viscosity and electric permittivityis introduced, so that the limit model retains the characteristic length associated with the pore size and the electric double layer thickness. The homogenized model consists of two weakly coupled parts: the steady flow of the electrolyte can be described in terms of a global pressure and streaming potentials of the two ions, independently of the solid phase deformations which are computed afterwards for the fluid stress acting on pore walls. The two-scale model has been implemented in the Sfepy finite element software. The numerical results show dependence of the homogenized coefficients on the microstructure porosity. By virtue of the corrector result of the homogenization, microscopic responses in a local representative cell can be reconstructed from the macroscopic solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.