Abstract

Abstract Transport in biological systems often occurs in complex spatial environments involving random structures. Motivated by such applications, we investigate an idealized model for solute transport past an array of point sinks, randomly distributed along a line, which remove solute via first-order kinetics. Random sink locations give rise to long-range spatial correlations in the solute field and influence the mean concentration. We present a non-standard approach in evaluating these features based on rationally approximating integrals of a suitable Green’s function, which accommodates contributions varying on short and long lengthscales and has deterministic and stochastic components. We refine the results of classical two-scale methods for a periodic sink array (giving more accurate higher-order corrections with non-local contributions) and find explicit predictions for the fluctuations in concentration and disorder-induced corrections to the mean for both weakly and strongly disordered sink locations. Our predictions are validated across a large region of parameter space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.