Abstract
AbstractA premium calculation principle π is called positively homogeneous if π(cX) = cπ(X) for all c > 0 and all random variables X. For all known principles it is shown that this condition is fulfilled if it is satisfied for two specific values of c only, say c = 2 and c = 3, and for only all two point random variables X. In the case of the Esscher principle one value of c suffices. In short this means that local homogeneity implies global homogeneity. From this it follows that in the case of the zero utility principle or Swiss premium calculation principle, the underlying utility function is of a very specific type.A very general theorem on premium calculation principles which satisfy a weak continuity condition, is added. Among others the proof uses Kroneckers Theorem on Diophantine Approximations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.