Abstract

In this paper, a necessary and sufficient condition for the homogeneous distance on an arbitrary finite commutative principal ideal ring to be a metric is obtained. We completely characterize the lower bound of homogeneous distances of matrix product codes over any finite principal ideal ring where the homogeneous distance is a metric. Furthermore, the minimum homogeneous distances of the duals of such codes are also explicitly investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.