Abstract
In this paper, we attempted to grow semi-insulating SiC epitaxial layer by in-situ iron doping. Homoepitaxial growth of iron-doped 4H-SiC layer was performed by MOCVD using organo-silicon precursor, bis-trimethylsilylmethane (BTMSM, [C7H20Si2]) and metal organic precursor, t-butylferrocene ([C14H17Fe]). Doping-induced crystallinity degradation showed different tendency depending on conducting type of substrate. The crystal quality of epilayer grown on n-type substrate was not degraded significantly despite of the Fe doping but in case of semi-insulating substrate, crystallinity was remarkably degraded as increasing iron contents. For measurement of resistivity of highly resistive iron-doped 4H-SiC epilayer, we used the on-resistance technique which is firstly attempted for measuring resistivity of epilayer. From on-resistance of epilayer measured by I-V, it is shown that the residual donor concentration of epilayer was decreased as increasing partial pressure of t-butylferrocene. The resistivity of iron-doped 4H-SiC epilayer was about 107 Ωcm. From this result, it is concluded that Fe could effectively act as a compensation center in the iron-doped 4H-SiC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.