Abstract
In this paper, we study homoclinic solutions for second-order Hamiltonian systems u¨-L(t)u+Wu(t,u)=0, where L(t) is allowed to be a positive semi-definite symmetric matrix for all t∈R, and W∈C1(R×RN,R) is an indefinite potential satisfying asymptotically quadratic condition at infinity on u. We obtain some new results on the existence and multiplicity of homoclinic solutions for second-order systems. The proof is based on variational methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.