Abstract

The concept of homo-FRET is often used to describe energy transfer between like chromophores of molecular aggregates such as in π-conjugated polymers. Homo-FRET is revealed by a dynamic depolarization in fluorescence but strictly only applies to the limit of weak dipole-dipole coupling, where energy transfer occurs on time scales much longer than those of nuclear relaxation. By considering the polarization anisotropy of photoluminescence emission and excitation of model multichromophoric aggregates on the single-molecule level, we demonstrate the transition of energy-transfer dynamics from the case of weak coupling to that of strong coupling, revealing the elusive regime of intermediate-strength coupling where energy transfer between degenerate donor and acceptor chromophores becomes reversible so that information on the excitation route of the emitting chromophore is lost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.