Abstract

DNA consists of two type of base-pairs, G-C and A-T, in which the highest occupied molecular orbital (HOMO) localizes on the purine bases G and A. While the hole transfer through consecutive Gs or As occurs faster than 10(9) s(-1), a significant drop in the hole transfer rate was observed for G-C and A-T mixed random sequences. In this study, by using various natural and artificial nucleobases having different HOMO levels, the effect of the HOMO-energy gap between bases (Δ(HOMO)) on the hole-transfer kinetics in DNA was investigated. The results demonstrated that the hole transfer rate can be increased by decreasing the Δ(HOMO) and can be finely tuned over 3 orders of magnitude by varying the Δ(HOMO).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.