Abstract
AbstractMacromonomers have been extensively used, as well defined building blocks for various macromolecular architectures via anionic, ROMP and free radical homo‐ or copolymerization processes. The purpose of the present work was to examine the homopolymerization and copolymerization of ω‐allyl, ω‐undecenyl and ω‐vinylbenzyl polystyrene (PS) macromonomers, in the presence of early or late transition metal catalysts. The influence of several parameters (type of catalytic system, nature of polymerizable end‐group and molar mass of the macromonomer) on the homopolymerization was first investigated. Whereas ω‐allyl or ω‐undecenyl PS macromonomers were not very reactive in homopolymerization whatever the catalyst, ω‐vinylbenzyl PS macromonomers gave interesting results with CpTiCl3/MAO and Cp*TiCl3/MAO. The copolymerization of these macromonomers with ethylene was also studied in the presence of the following palladium catalyst: [(ArNC(Me)C(Me)NAr)Pd(CH2)3(COOMe)]+BAr4′−(VERSIPOL™) (Ar = 2,6‐iPr2–C6H3 and Ar′ = 3,5‐(CF3)2C6H3). ω‐vinylbenzyl PS macromonomers could not be incorporated into poly(ethylene) chains. On the contrary, the incorporation of ω‐allyl PS macromonomers was achieved. Moreover, for macromonomers containing an alkyl spacer between the allylic unit and the PS chain, the incorporation rate, the copolymerization yield and the molar masses of the copolymers were increased, giving access to a new type of graft copolymer structure. Synthesis of polystyrene macromonomers.magnified imageSynthesis of polystyrene macromonomers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.