Abstract

Myofibroblasts play a central role in the pathogenesis of liver fibrosis. Myofibroblasts of bone marrow (BM) origin have recently been identified in fibrotic liver. However, little is known about the mechanism that controls their mobilization in vivo. Here we confirmed that BM mesenchymal stem cells (BMSCs) can migrate to the damaged liver and differentiate into myofibroblasts. We also investigated the mechanism underlying the homing of BMSCs after liver injury. ICR mice were lethally irradiated and received BM transplants from enhanced green fluorescent protein transgenic mice. Carbon tetrachloride or bile duct ligation was used to induce liver fibrosis. The fibrotic liver tissue was examined by immunofluorescent staining to identify BM-derived myofibroblasts. BMSCs contributed significantly to myofibroblast population in fibrotic liver. Moreover, analysis in vivo and in vitro suggested that homing of BMSCs to the damaged liver was in response to sphingosine 1-phosphate (S1P) gradient between liver and BM. Furthermore, S1P receptor type 3 (S1P3) was required for migration of BMSCs triggered by S1P. S1P mediates liver fibrogenesis through homing of BMSCs via S1P3 receptor, which may represent a novel therapeutic target in liver fibrosis through inhibiting S1P formation and/or receptor activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.