Abstract
Homeostatic microfiber leathers with temperature self-regulation promise broad applications, ranging from the apparel and automotive interior industries to the home furnishing and healthcare industries. Temperature self-regulation is achieved by phase-change materials containing microcapsules introduced within the leathers. The introduction of phase change microcapsules (PCMs) into microfiber leather faces two formidable challenges: (1) the shell of microcapsules must remain chemically stable against alkalis and organic solvents; (2) PCMs possess the ability to reduce supercooling during which latent heat is released, allowing for the precise and controllable release of latent heat. Here we present a high-performance homeostatic microfiber-composed synthetic leather containing PCMs that can address these two challenges, which not only demonstrate exceptional chemical robustness under alkaline conditions but also offer efficient and precise control over temperature fluctuation and latent heat release by reducing supercooling. Titanium carbide (TiC) known for its high thermal conductivity and alkali resistance has been selected as the shell material for the microcapsules, which can effectively resolve chemical stability issues. Meanwhile, the high thermal conductivity of TiC can be leveraged to enhance heterogeneous nucleation, thus narrowing the temperature range for latent heat release. The resultant microfiber leather shows outstanding capabilities for adjustable thermal energy storage. Our studies offer an effective approach to create homeostatic microfiber-composed synthetic leathers with chemical robustness and undercooling self-regulation, which would be useful in the fields of the textile, biomedical, and healthcare industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.