Abstract

Home Energy Management Systems (HEMS) have been widely used for energy management in smart homes. Energy management in a smart home is a challenging task, which require efficient scheduling of appliances. The main focus of HEMS is to schedule the operation of appliances in such a way that it gives us optimized performance in terms of Peak to Average Ratio (PAR), Electric Cost (EC) minimization, execution time and User Comfort (UC). The Time of Use (ToU) pricing scheme is used in this paper. We used Genetic Algorithm (GA), Biogeography-based optimization (BBO) and our proposed hybrid Genetic Biogeography-based Optimization (GBBO), techniques to schedule appliances in single home and for multiple homes. Simulations are carried out using eight different appliances. The results show that GA and GBBO execute better in case of PAR reduction and EC minimization. GBBO outperforms in terms of user comfort. We calculated the UC in terms of waiting time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.