Abstract
A mobile social network (MSN) is a special kind of delay tolerant network (DTN) composed of mobile nodes that move around and share information with each other through their carried short-distance wireless communication devices. A main characteristic of MSNs is that mobile nodes in the networks generally visit some locations (namely, community homes) frequently, while visiting other locations less frequently. In this paper, we propose a novel zero-knowledge multi-copy routing algorithm, homing spread (HS), for homogeneous MSNs, in which all mobile nodes share all community homes. HS is a distributed and localized algorithm. It mainly lets community homes spread messages with a higher priority. Theoretical analysis shows that HS can spread a given number of message copies in an optimal way when the inter-meeting time between any two nodes and between a node and a community home follows independent and identical exponential distributions, respectively. We also extend HS to the heterogeneous MSNs, where mobile nodes have different community homes. In addition, we calculate the expected delivery delay of HS, and conduct extensive simulations. Results show that community homes are important factors in message spreading. By using homes to spread messages faster, HS achieves a better performance than existing zero-knowledge MSN routing algorithms, including Epidemic (with a given number of copies), and Spray&Wait.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.