Abstract
Delay/disruption tolerant networking (DTN) is an approach to networking where intermittent connectivity exists: it is often afforded by a store and forward technique. Depending on the capability of intermediary nodes to carry and forward messages, messages can be eventually delivered to their destination by mobile nodes with an appropriate routing protocol. To have achieved a successful delivery, most DTN routing protocols use message duplication methods. Although messages are rapidly transferred to the destination, the redundancy in the number of message copies increases rapidly. This paper presents a new routing scheme based on a stochastic process for epidemic routing. Message redundancy is efficiently reduced and the number of message copies is controlled reasonably. During the contact process of nodes in the network, the number of message copies changes, and according to the variability in the number of copies, we construct a special Markov chain, birth and death process, on the number of message copies then calculate and obtain a stationary distribution of the birth and death process. Comparing the theoretical model with the simulation we have performed we see similar results. Our method improves on time-to-live (TTL) and antipacket methods, in both redundancy and delivery success efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.