Abstract
We present a theoretical model that describes holographic ionic fixing and storage dynamics in photorefractive crystals. Holographic gratings that are based on charge redistribution inevitably decay because of ionic and electronic conduction. Relevant decay rates and transient hologram field expressions are derived. Ionic gratings are partially screened by trapped electrons on readout. The lifetimes of fixed ionic holograms are limited by the finite ionic conductivity at low (i.e., room) temperatures. Only under certain and restricted conditions can these decay times be acceptably long. A significant increase in fixed ionic hologram lifetime is realized in lithium niobate with a low hydrogen-impurity content. The residual ionic conductivity (decay-time constant) in these samples exhibits ~1.4-eV activation energy and is not due to protonic conduction. Fixed hologram lifetimes of ~2 years at room temperature in dehydrated lithium niobate crystals are projected.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have