Abstract
Abstract We study the holographic s + p insulator/superconductor phase transition at zero temperature by using the model with a scalar triplet charged under an S U ( 2 ) gauge field in anti-de Sitter (AdS) soliton background. In this model, besides the insulator phase, s-wave condensate phase and p-wave condensate phase, the s + p coexisting condensate phase is found numerically when operator dimension Δ is greater than a critical value Δ c . We also construct the complete phase diagram in Δ − μ plane, which shows the s + p coexisting region is very narrow. Furthermore, we calculate the corresponding conductivities for different phases. The delta function support for the real part of conductivity of the spontaneous breaking phases is also revealed numerically as expected for the superconducting phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.