Abstract

We demonstrate exceptionally high slow-neutron diffraction efficiency (≈ 70% of transmitted intensity diffracted to the first order) from a holographic nanodiamond–polymer composite grating of only tens of micrometers thickness at the average neutron wavelength of 5.3 nm. By meticulous choice of materials for extreme refractive index modulation in a thin grating structure, we overcome typical wavelength and angular selectivity issues usually encountered when pursuing high diffraction efficiencies with a thick grating. This achievement paves the way for the implementation of flux-efficient diffractive elements, well-suited for polychromatic beams, and weakly collimated slow-neutron beams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.