Abstract
Major issues in photocatalysis include improving charge carrier separation efficiency at the interface of semiconductor photocatalysts and rationally developing efficient hierarchical heterostructures. Surface continuous growth deposition is used to make hollow Cu2-x S nanoboxes, and then simple hydrothermal reaction is used to make core-shell Cu2-x S@ZnIn2 S4 S-scheme heterojunctions. The photothermal and photocatalytic performance of Cu2-x S@ZnIn2 S4 is improved. In an experimental hydrogen production test, the Cu2-x S@ZnIn2 S4 photocatalyst produces 4653.43 µmol h-1 g-1 of hydrogen, which is 137.6 and 13.8 times higher than pure Cu2-x S and ZnIn2 S4 , respectively. Furthermore, the photocatalyst exhibits a high tetracycline degradation efficiency in the water of up to 98.8%. For photocatalytic reactions, the hollow core-shell configuration gives a large specific surface area and more reactive sites. The photocatalytic response range is broadened, infrared light absorption enhanced, the photothermal effect is outstanding, and the photocatalytic process is promoted. Meanwhile, characterizations, degradation studies, active species trapping investigations, energy band structure analysis, and theoretical calculations all reveal that the S-scheme heterojunction can efficiently increase photogenerated carrier separation. This research opens up new possibilities for future S-scheme heterojunction catalyst design and development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.