Abstract

ABSTRACTThe membrane separation process for CO2 capture can be interfered by the gaseous components and the fine particles in flue gas, especially in desulfurized flue gas. In this work, the pint-sized Polyimide(PI) hollow fiber membrane contactors were self-packed to investigate the membrane CO2 separation from flue gas containing fine particles and gaseous contaminants (SO2,SO3,H2O). First, the effects of SO2, SO3, water vapor, and gypsum particles on the CO2 capture were studied independently and synergistically. The results showed that the effect of SO2 on the membrane separation properties is indistinctive; however, the membrane performance was damaged seriously with the addition of SO3. The high humidity promoted the CO2 separation initially before inhibiting the PI membrane performance. Moreover, the decrease of the CO2/N2 selectivity and the permeation rate were accelerated with the coexistence of SO2. The membrane performance showed an obvious deterioration in the presence of gypsum particles, with a 21% decrease in the CO2/N2 selectivity and 51% decrease in the permeation rate. Furthermore, the gypsum particles exerted dramatic damage. Under the WFGD conditions, the combined effects of SO2, water vapor, and the gypsum particles influenced the stability of the membrane significantly. This tendency is mainly attributed to the deposition of fine particles and aerosol on the membrane surface, which occupied the effective area and enhanced the mass transfer resistance. This study of impurities’ influence could play an important role in further industrial application of membrane CO2 capture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call