Abstract
In this work, a novel mode of hollow fiber liquid-phase microextraction (HF-LPME) technique namely rotating extraction cell solvent bar microextraction (REC-SBME) was introduced. The proposed method was applied for the preconcentration of methylene blue (MB) and rhodamine 6G (RG) in some real samples, including soft drink, lipstick, environmental water, and wastewater samples. In the extraction setup, two pieces of hollow fibers were fixed on a mechanical support and immersed in a rotating extraction cell containing the sample solution during the extraction process. The rotation of the extraction cell by using an electric motor led to an enhancement in the mass transfer of the dyes from the sample solution into the organic acceptor phase. In the developed procedure, the UV–Vis spectrophotometry and HPLC-UV/Vis were employed as detection methods for the analysis of the acceptor phase and the obtained results were compared. Optimization of the extraction factors affecting the method, including organic solvent type, sample solution pH, extraction time, rotational rate, the volume of sample and acceptor solutions, salt addition, and temperature was performed in order to obtain the best preconcentration factor. Linear dynamic range obtained by HPLC-UV/Vis and spectrophotometry was observed in the ranges of 2.5–1200 ng mL−1 for RG and 1.6–600 ng mL−1 for MB with R2 more than 0.9971. Also, relative standard deviation (RSD) values (n = 3) less than 3.8% were obtained. The good conformity of the obtained results makes UV–Vis spectrophotometric method an ideal tool for routine analysis of trace dyes in the complex matrices after REC-SBME.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have