Abstract

A hollow electrode enhanced radio frequency (rf) glow plasma excitation technique and its application to the chemical vapor deposition of microcrystalline silicon films have been studied. In this technique, the reactor has two types of hollow structure. One is a hollow counterelectrode, and the other serves as both a hollow counterelectrode and a hollow rf electrode. The application of these discharge types to semiconductor processing is studied in the case of plasma enhanced chemical vapor deposition of hydrogenated microcrystalline silicon thin films. High crystallinity, photosensitivity and a maximum deposition rate of 6.0nm∕s can all be achieved at plasma excitation frequency of 13.56MHz and substrate temperature of 300°C. Properties of these plasmas are investigated by observing the plasma emission pattern, optical emission spectrum analysis and electrical parameters of the rf electrode. It is found that the plasma technique using both types of hollow discharge not only results in higher intensity of SiH* and Hα but also in much smaller self-bias voltage of the rf electrode. Faster processing of device grade hydrogenated microcrystalline silicon films can also be achieved under lower rf power compared to use of the hollow counterelectrode technique alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.