Abstract

High-resolution multi-species spectroscopy is achieved by delivering broadband3-4-μmmid-infrared light through a 4.5-meter-long silica-based hollow-core optical fiber. Absorptions from H37Cl, H35Cl, H2O and CH4 present in the gas within the fiber core are observed, and the corresponding gas concentrations are obtained to 5-ppb precision using a high-resolution Fourier-transform spectrometer and a full-spectrum multi-species fitting algorithm. We show that by fully fitting the narrow absorption features of these light molecules their contributions can be nulled, enabling further spectroscopy of C3H6O and C3H8O contained in a Herriott cell after the fiber. As a demonstration of the potential to extend fiber-delivered broadband mid-infrared spectroscopy to significant distances, we present a high-resolution characterization of the transmission of a 63-meter length of hollow-core fiber, fully fitting the input and output spectra to obtain the intra-fiber gas concentrations. We show that, despite the fiber not having been purged, useful spectroscopic windows are still preserved which have the potential to enable hydrocarbon spectroscopy at the distal end of fibers with lengths of tens or even hundreds of meters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call