Abstract

Cells have evolved inherent mechanisms, like homologous recombination (HR), to repair damaged DNA. However, repairs at telomeres can lead to genomic instability, often associated with cancer. While most rapidly dividing cells employ telomerase, the others maintain telomere length through HR-dependent alternative lengthening of telomeres (ALT) pathways. Here we describe the crystal structures of Holliday junction intermediates of the HR-dependent ALT mechanism. Using an extended human telomeric repeat, we also report the crystal structure of two Holliday junctions in close proximity, which associate together through strand exchange to form a hemicatenated double Holliday junction. Our combined structural results demonstrate that ACC nucleotides in the C-rich lagging strand (5'-CTAACCCTAA-3') at the telomere repeat sequence constitute a conserved structural feature that constrains crossover geometry and is a preferred site for Holliday junction formation in telomeres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.