Abstract

Abstract In high-density, high-rise cities such as Hong Kong, buildings account for nearly 90% of energy consumption and 61% of the carbon emissions. Therefore, it is important to study the design of buildings, especially high-rise buildings, so as to achieve lower carbon emissions. The carbon emissions of a building consist of embodied carbon from the production of construction materials and operational carbon from energy consumption during daily operation (e.g., air-conditioning and lighting). While most of the previous studies concentrated mainly on either embodied or operational carbon, an integrated analysis of both types of carbon emissions can improve the sustainable design of buildings. Therefore, this paper presents a holistic framework using building information modeling (BIM) technology in order to enhance the sustainable low carbon design of high-rise buildings. BIM provides detailed physical and functional characteristics of buildings that can be integrated with various environmental modeling approaches to achieve a holistic design and assessment of low carbon buildings. In a case study, the proposed framework is examined to evaluate the embodied and operational carbon in a high-rise residential building due to various envelope designs. The results demonstrate how the BIM framework provides a decision support basis for evaluating the key carbon emission sources throughout a building's life cycle and exploring more environmentally sustainable measures to improve the built environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call